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Classical kinetic theory simulations using smoothed particle hydrodynamics
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The technique of smoothed particle hydrodynani®BH) is used to simulate a variety of three-dimensional
systems comprised of elastic spheres contained in a box with perfectly reflecting walls. Particle interactions are
determined solely by the conservative SPH body forces, from which the potential energy function is derived.
This function is followed to monitor the conservation of the total energy as various initial nonequilibrium
velocity distributions are quickly randomized by particle collisions. The resulting equilibrium speed and
velocity distributions are found to agree with those predicted by kinetic theory. The algorithm conserves the
total energy to within 0.02%. The pressure exerted on the box walls and the mean free path between collisions
are comparable with those expected for a system of rigid particles. The problem of two isolated systems that
are allowed to mix after an impenetrable partition is removed is also simulated with acceptable results. Finally,
the equilibrium spatial distribution of the particles is considered and a semiemperical relationship derived for
this multiply anticorrelated distributionS1063-651X96)01608-X].

PACS numbeg(s): 02.70—-c, 02.70.Ns, 05.20.Dd

I. INTRODUCTION interactions such as hard spheres or square WEHk Sec-
ond, the fundamental requirements of any SPH code to effi-
Advances in computational science have made computariently locate nearest neighbors and advance their phase-
simulations an integral part of investigations of classical staspace coordinates means that it is straightforward to modify
tistical mechanic¢see[1] for a general revieyv The starting  existing SPH code for simple molecular dynamics simula-
point for such simulations is usually the interaction potential.tions[13]. Third, all the phase-space information about every
A number of different choices have been used, beginningarticle in the system is always available for statistical analy-
with the pioneering work of Alder and Wainwrigh2,3] us-  sis, so systems can be studied in considerable detail.
ing infinitely hard spheres surrounded by square well poten- These are more than mere coincidences, but the simple
tials, and followed by the introduction of the continuous explanation is that SPH alreadg a molecular dynamics
Lennard-Jones potentigld,5]. In this paper we do not technique that has been adapted to the needs of modeling the
specify the potentiad priori, but rather start with the funda- average properties of a fluid by using macroparticles and a
mental fact that the momentum distributions in classical stasmoothing procedure with a statistically significant number
tistical mechanics do not depend on the exact nature of thef neighbors(usually =30 neighbors for each particle for
interaction between the particles within a system, and so catinree-dimensional systemsHoover et al. [14] explore this
be expressed in a form applicable to all bodié§ There-  application of SPH for molecular fluids.
fore, any convenient type of interactions may be chosen for But here we use SPH to simulate rarefied classical sys-
simulations of these distributions provided that no quantuntems, so the need for a large number of neighbors is auto-
effects are to be considered. matically eliminated, even though it is possible for any num-
A useful computational choice turns out to be the tech-ber of particles to collide simultaneously. When this does
nique of smoothed particle hydrodynamiSPH in which  occasionally happen, the forces are just the sums due to the
the particles may be thought of as macroscopic soft spherdadividual binary collisions because SPH interactions are
(see[7] for a general review The SPH patrticle interactions handled pairwise. Now, if these systems are restricted to
are repulsive and purely hydrodynamic, depending on th@ome numerical volume where wall collisions are included
local pressure, density, temperature, and interparticle disy reflecting the particles’ normal velocities at specified
tance. Even though SPH has usually been used to modebundaries, we then have an ideal method for performing
astrophysical situations with complicated geometries, such asmulations of classical systems governed by Maxwell-
mass-transferring binarig8,9], stellar collisions[10], and  Boltzmann statistics. In the simulations presented below, we
the origin of the earth-moon systgrl], it has many quali- use 5000 marble-sized particles of arbitrary masa il n?
ties that also make it well suited for basic molecular dynam-box with perfectly reflecting walls. The particles are soft but
ics simulations. elastic, and capable of storing elastic potential energy during
First, the conservative and continuous SPH interparticlecollisions. We note that SPH particles do not have any spin
forces are usually truncated at a definite separation distancangular momentum, so they should be regarded as smooth
avoiding the need to compute long-range forces as well aspheres, with only the momenta parallel to the lines joining
the difficulties that can be associated with discrete particlgarticle centers altered during collisions.
The rest of this paper is organized as follows. In Sec. Il
we give a brief introduction to the theory of SPH. The details
*Electronic address: simpson@hubble.pss.fit.edu, of the numerical method are given in Sec. lll. The interaction
wood@kepler.pss.fit.edu potential is derived from the momentum equation in Sec. IV.
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The initial, nonequilibrium velocity distributions are de- (1) is replaced by a summation over all the particles within
scribed in Sec. V. In Sec. VI we present the results as theseh of the locationr. This procedure yields the general form
systems evolve to equilibrium configurations, including theof SPH interpolants:

speed and velocity distributions, the pressure exerted by the
particles on the walls of the box, the mean free path between
collisions, and the conservation of the total energy. The basic
model is then modified to simulate a mixing problem where
two initially isolated systems are suddenly allowed to inter-wherem; is the mass of thgth nearest neighbor. For ex-
act after removing a partition. We also take advantage of thample, the interpolated density for particlés

SPH requirement of identifying the neighbors for each par-
ticle to measure the distribution of the number of neighbors.
For comparison we derive a semiempirical analytical expres-
sion for this multiply anticorrelated distribution. Finally, we
conclude in Sec. VIl with a summary of our results and some Spatial derivatives of interpolated quantities may be
suggestions for other applications of this new use of SPH. found in a similar manner by using

A(N=2 m %wu—r,»,m, 3
J j
Pi:; m;W; . (4)

A.
Il. SPH FUNDAMENTALS VAN =3 m, p_{ VW(r—r; h). )
The method of smoothed particle hydrodynamics is a La- : '
grangian technique first developed to model astrophysicalisually a symmetrized form is used for derivatives by taking
problems with complicated geometrigs5,16. The fluid is  either the arithmetic or geometric meanAfof the particle

assumed to consist of a finite number of fluid elements, antbcated atr and particlej. Using the arithmetic mean, the

the local fluid properties at position are determined by momentum equation for pressure forces becomes

sampling nearby fluid elements and weighting their contribu-

tions according to an analytemoothing kernethat smooths d?r;

(or averageslocal fluctuations. a2 >
The fluid elements are assumed to be spherical particles

of effective radiush, and the kernel is usually chosen so thatwhere the sums are over all particles within @f particlei,

the sampling includes only those particles withih 2f a  and the gradienV, is evaluated with respect to thth coor-

given point in space; consequently, the quantitys also  dinates.

known as thesmoothing lengthWe assume that all particles Finally, we mention that although SPH simulations gen-

have equal mass and thhtis equal for all particles and erally use some kind of artificial viscosity or damping to

PP,
2 ij

Pi

m; Viw;, (6)

constant in time. prevent postshock oscillations, we do not include these ef-
The smoothed interpolant for a physical fiefdr) is  fects in our models because to do so would violate the spirit
given by of the kinetic models we are simulating, even though some
collisions are formally supersonic. This decision may intro-
<A(r)>=f A(FOW(r—r',hydr’, (1) duce a small, but_ as de.monstrated by the results, negligible
amount of numerical noise.

whereW(r,h) is the smoothing kernel and the integration is IIl. NUMERICS

over the entire space in which the kernel is defined. The

function W(r,h) is chosen to be differentiable and sharply We use the isothermal equation of state

peaked so that it resembles &function ash—0, and is

normalized such thafwW dv=1. Pi=picZ, (7)

The smoothing kernel used throughout this work is )
wherec; is the local sound speed, to guarantee that the par-

1-3g?+3q® if 0=q=<1, ticles’ thermal (_anergies are held constant. The collisions are

therefore elastic, even though particles may actually pass

W(rij,h=—319 1(2-9)° if 1=g=<2, (2 through each other as discussed further in Sec. IV. It is im-
0 otherwise, portant to note that even though the local “pressure” is

found using an equation of state derived from kinetic theory
where g=r;/h and the factor kth? is the normalization itself, the fundamental assumption that the exact form of the
constan{17]. Interparticle distances are discretized with 400particle interactions is irrelevant is not contradicted.
increments peh, and nearby particles are located using the The momentum equation is integrated using the leapfrog

sorting routine described by Simpsfi8]. method:
If W(r) is an even function, thed(r)=(A(r))+0(h?).
Hence, any physical field can always be replaced by its r=rM 1 At 12) (8)
smoothed estimate to within the accuracy of the smoothing
process. In SPH, all physical fields are replaced by their V202 LA At 9)

smoothed interpolants and the angular brackets are dropped
as a matter of convenience. Furthermore, because we mushere the superscripts refer to the variable time step which is
assume a finite number of fluid elements, the integral in Eqchosen by
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The subscript “max” refers to the maximum value of all *2 1 E ]
particles ande=0.3 is the Courant numbgd9] chosen to 205 F -
maintain numerical stability. A typical time step for the mod- > E 3
els presented in this paper4s3x10 °s. R I T T
The walls of the box holding the particles are assumed to 0 05 1 15 2
be flat and perfectly reflecting. The calculation of collisions ' '
between the particles and the walls requires the end point q
velocities, which are found by
FIG. 1. The potential energy equatiqa5) as a function of
V=LVl ynm2) (11)  particle separation for one pair of colliding particles.
If a particle is approaching a wall and is withinof the wall,  This function is shown in Fig. 1 using/ as given in Eq(2).
the normal component of the velocity is reflected by The maximum potential energy of a binary collision is
PP (2In2c2=1.3&2. If the total kinetic energy of a colliding

Vi normai= Vi normai™ 2V normat (12 pair exceeds this value, the particles will pass through each

other. This certainly occurs in these simulations because

This method of handling wall collisions is quite different some particles have speeds several timeShe total poten-
from the usual method of modeling boundaries by dense akja| energyU™ of the entire system at time stepis then

rays of SPH particlegl4], and can be extended to arbitrarily
shaped surfaces provided that the local normal is known.

As noted above, the actual mass of the particles is U”=20§Z In
arbitrary and irrelevant if we assume that the mass of the box :
is much greater tham and that the particles are identical and . . .
only interact with each other. Consequently, we use units ofvhere 2W'(q;) is the number density at the location of
energy and pressufger unit massin MKS units, these are Particlei. This basic result is mentioned briefly [&0].
m?s~2 and ni's 2 respectively. Even though it is not strictly necessary, we also integrate

It is convenient to use velocities in units of the local iso- the the internal energy equation for each particle as a check
thermal sound speed when considering the total kinetic ern the numerical stability of our models and for comparison
ergy. For all the simulations presented we ege VKT/m with Eqg. (16). The standard hydrodynamic equation for the
=200 m/s, and note that the temperature and mass could 58t€ Of change of the internal energy due to body forces is
specified, if desired. The total kinetic ener@er unit masps
for a system ofN particles is theniNkT/m=3Nc2. The du P V.v 17
numerical integration scheme conserves this to within dt pi v
~0.02% over=10" time steps. The results were all gener-
ated on a Sparc ELC usir®pRTRAN 77with single precision which can be written in SPH formalism as
numbers, typically requiring-3 h of CPU time per 0.1 s of
simulated time. du P,

E‘;?Z mvi;- ViWi; , (18)

1+§ W'<qij>), (16)

IV. THE POTENTIAL ENERGY FUNCTION

The fact that the SPH forces are conservative allows us therev;; =v;—v;. We integrate this with the simple one-step
derive the potential energy function from the equation ofimplicit method,
motion. For a single pair of equal mass patrticles the accel-

erations are given by E@6), dul
g Y Ed ul=ul T AN (19
PP dt
a=—a=—| 7+ | VW;(@)=—Vu;, (13 ,
i P and setu;=0 when there are no nearest neighbors. The total

) ) ) . integrated potential and kinetic energies at time Steare
whereu;; is the elastic potential energy per unit mass of theyhen

collision. Using Eq.(7) we obtain

o VW) | ur=> ul (20)
2c —1+WI,J(q) —VU”(q) (14)

S

The notationW’ indicates that the normalization constant is and
not to be included. Integrating E¢14) gives

n 1 n n
i (q) =22 1+ W' (q)]. (15) K'=3 20 v, (21)



2080 JAMES C. SIMPSON AND MATT A. WOOD 54

o B e

s SR )
= @\@Q{?

0
0 02040608 0 02040608 0 02040608
x (m) D, x (m) D, x (m) D,

N
o
o
©
=)
™

Y 4

b t=0.001s

T T T T T T T T T T T T

FIG. 2. The initial velocity distributions shown in the plane t=0.003 s
through the middle of the computational box. The total speed of 18 N=17 N.=18
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V. INITIAL CONFIGURATIONS 20

YT

10 N=50] -~~~ N=50] N_=50
- . 1=0.02 s
The models initially consist of a set of 5000=0.01 m b b b b b b b 1
0 3800 600 O 300 600 O 300 600

particles placed pseudorandomly in a cube oésidm with

initial interparticle separations of at leagt 4nd with all the speed (m/s) speed (m/s) speed (m/s)

particles at least 2 away from the walls. The total maxi-

mum volume occupied by the particles for these parameters FIG. 3. Histograms of the particle speeds as the systems ap-

is 0.021 i, satisfying the important condition that the gas bep_roac_:h equilibrium. The exact theoretlcal Maxwell-Boltzmann dls-_

rarefied tributions are shown for comparison. The average number of colli-
Three different initial velocity configurations are used, S©ONS Per particle is also given for each time.

each of which gives every particle a total speed®f,, but

distributed differently between the three spatial directions so

that systems with differing degrees of randomness can be The expected mean free patlor a system o identical

compared as they approach equilibridffig. 2). Particles hard-sphereparticles of radiug contained inside a volume

may also be injected through a hole in one wall of the boxV can be derived by scaling argumef24] and is

with similar results[13]. The first initial velocity distribu-

tion, denotedD,, gives all particles a speed o8¢, in the \%

+x direction. The second),, randomly assigns a velocity ?\Hs:m-

of =v3c, in only one of thex, y, or z directions. The third

distribution D5 assigns random velocity components in all

three spatial directions, with normalized tov3c,.

B. Collisions and mean free paths

(22

For the parameters used hekgg=0.113 m.

We measurégp for each particle by assuming that each
free path begins when the particle no longer has any neigh-
VI. RESULTS bors, and ends when it first contacts another particle. These

A. Speed and velocity distributions

LI N JO A S N B

The distributions of the particle speeds for all three initial 15 F 9 10T AT TTTTTY
velocity distributions are shown in Fig. 3 as the systems g C ] 2 | ]
come to equilibrium. As expected, these rapidly approach the E:’ 10 F ] E:> - .
theoretical Maxwell-Boltzmann curves, regardless of the ini- & | ] 2 5L i
tial velocity distribution. The initially more randomized dis- 2 . J B I ]
tributions D, and D5 approach the expected curves slightly 2 C ] s L -
faster tharD . Each of these systems is well randomized and 0 . N . 0 T
close to equilibrium after~50 collisions per particle, and 00
they are close to Maxwellian after as few-a&5 collisions, 0 . ;Of (m/sso)o );53210013 (ni /s)
with D, andD 4 requiring only about 15 to 20 collisions. The P Y
speed distributions are nearly identical afted.02 s. o T T o TR

The collision rate of-25 collisions per particle per 0.01 s
of real time was found to be approximately constant as all
three systems were followed out to a maximum of 0.3 s real
time. The method of measuring the number of collisions is
described in the next section.

In Fig. 4 we show the distribution of speeds as well as

No. of particles
o

No. of particles
)

MR B S|

velocities forD, averaged over several different times after U ObTloeen i I
equilibrium has been established. The theoretical curves are 500 0500 -500 0 500
again shown for comparison. There are slight deviations due y velocity (m/s) z velocity (m/s)

to random fluctuations which are most pronounced near the
peaks, but in general there is excellent agreement. The re- FIG. 4. Speed and velocity distributions fBr; averaged over
sults forD, andD5 are similar. the five different timeg=0.1, 0.15, 0.2, 0.25, and 0.3 s.
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FIG. 5. Histograms of the mean free paths for all particles be- FIG. 7. Pressure vs time and a histogram of the pressurés,for

tweent=0.1 and 0.2 s for each initial velocity distribution. during the time interval between 0.1 and 0.2 s.
distances are summed and then divided by the number of p— Eﬂ mo2 23)
collisions to find the mean free path for each particle. Mul- 3V '

tiple particle collisions are not handled in any special o
manner—a particle is either colliding or it is not. So evenwhereuzz3c§. We expect a value of 210° m~
though a particle may collide with several particles eitherN=5000,V=1 m®, andc,=200 m/s.
simultaneously or sequentially and register only the end of The pressure at the end of each time step is measured by
the most recent free path, no free path distance is recordeslimming the absolute values of the change in the normal
until the particle once again has no neighbors. velocities reflected when wall collisions occur and dividing
The histograms of the individual mean paths for all threethis by the time step. These pressures are then averaged over
initial distributions for the time interval between 0.1 and 0.2every 10 time steps between 0 and 0.3 s. The pressures for
s are shown in Fig. 5. These are basically Gaussians skewegch of the initial velocity distributions are nearly identical
very slightly towards the larger values, with virtually identi- and constant over sufficiently long intervas0.01 9.
cal average values of 0.16@.010 m. The pressures fdD, during the time interval from 0.1 to
The value forhyg is within about one standard deviation 0.2 s are shown in Fig. 7. The results for other time intervals
of Agpy, Which is alsoh. The most obvious reason for this and also forD, and D5 are nearly identical and are not
difference is that SPH particles anet hard spheres but can shown. The pressure vs time plot shows random fluctuations
interpenetrate after first coming into contact with each otheabout a constant mean value, while the histogram is a broad
and before reversing their direction. Figure 6 shows the avGaussian with considerable fluctuations caused by the fact
erage interparticle distance for each colliding particleDgr  that, on average, only-10 particles collide with the walls
att=0.2 s. Although it is clear that most of these distancesach time step. In system units, the pressure varies from
are greater than 15(0.015 m), about 30% are less, indicat- about 1x10° to 3x 10 with an average of 2.04910° and a
ing that substantial particle interpenetration occurs. Thigms deviation of 2.5810". The average pressure is 2.45%
means that when a collision is recorded and the free patlarger than expected because any particle approaching and
calculated, the distance is underestimated by a maximurmithin h of a wall is reflected, resulting in a smaller than
amount of abouh. The relatively small number of particles average particle density near the walls. This effectively de-
in the systems is also a factor in these different valued.for creases the volume of the box by6% for particles ap-
with the difference being inversely proportional to the num-proaching the walls, but not for particles receding from the
ber of particles. walls. The net result is about a 3% decrease in the volume of
the box, and hence an increase in the pressure by about the
same amount by Eq23), in reasonable agreement with the

1s72 for

C. Pressures simulated results.
The expected pressure that the particles exert on the walls
of the box due to momentum transfer is D. Conservation of energy

Because these are simulations and not actual physical sys-
tems, the energy does not fluctuate as it would for a real

) gg SLE L isothermal system in contact with a very large heat reservoir.

3 50 - E Consequently, the total energy should be very nearly con-

Sa0l 7 stant if the integration schemes are sound. The total energy

= 30 - 3 for all models is conserved to within 0.02% over somé 10

s 20 . time steps using either E¢L6) or (20) with Eq. (21), but the

“ 1k - logarithmic potential Eq(16) artificially reduces the disper-

ot = sion in the total energy because it is slightly out of phase

0 0.005 0.01 0.015 0.02 with the velocities used to find the total kinetic energy at
mean distances between colliding particles (m) time stepn. This tends to cancel the random errors and re-

duce the dispersion in the total energy by a factor of about 4

FIG. 6. The histogram of the distances between colliding par0r 5 as demonstrated in Fig. 8 during the first 0.03 sigr
ticles forD; att=0.2 s. This plot also shows some ringing during the beginning of
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3000 F- TABLE |. The theoretical and simulated distributions of neigh-
Loz kinetic energy o bors.
o970 E_° Number of Theoretical no. Simulated no.
. neighbors ) of particles of particles
3.0 B N potential energy Eu1
BO T T e e 0 4286.0 4289.6
5 1 660.4 659.9
E 30 - . potential energy cZ¥log(n,) 2 50.9 471.7
=) 20 | &y s 3 2.6 2.2
T 10 4 0.1 0.07
ED :
£ 8004 -
8000 17 - worthwhile to briefly describe an approximate analysis for
99 7 determining the number of neighbors that any particle is ex-
300.1 |- kinetic energy + ciYlog(n,) pected to have while paying special attention to the assump-
300.0 | e : tions used6].
2999 I | . L Let V andN be the volume occupied by the gas and the
0.00 0.01 0.02 003 number of particles in it, and a small part of the volume,
time (s) v<<V. If the gas is assumed to be uniform and the particles

noninteracting the probability that that any given patrticle is
FIG. 8. The kinetic, potential, and total energies oy during  iN the volumev is v/V, so that the probability that given
the first 0.03 s. The ringing at the start is due to the uniform initialParticles are in this volume isv(V)". Similarly, the prob-
velocities. ability that a particle is not in is (V—v)/V, and the prob-
ability that N—n given particles are not in this volume is
the simulation because each particle has the same velocitgV—v)/V]N~". If we include a factor which gives the num-
and no nearest neighbors. This is not seen in the energy ploker of ways of choosing out of N particles, then foN large
for D, and D4 (not shown. and n<N, the probabilityP(n) thatv containsn particles
becomes the Poisson distribution,

E. Isothermal mixing ne—a

The models we have presented are easily modified to P(n)= : (29
handle mixing problems, so we now consider two containers

initially at equilibrium with the same number of particles \ypere a=Np/V.

with the same total energyl(=T,), but at different pres- But this is not the situation that we have because the
sures ¥1#V,) [6]. The containers are then joined and the particlesdo interact and are moving. Furthermore, we want
particles allowed to mix. The final expected pressure aftefhe distribution of the number of neighbors the particles

the mixed system comes to equilibrium is have, and not the number density at some random location in

n!

1 1)1 the volumeV. This second difference is easy to resolve.
P=2—+—| . (24) Because a particle can have at mNst1 neighbors, it only
Pr P necessary to repladé by N—1 in Eq.(25). The total number

. . . . f icl ith igh is th
We useD; for this test and two different sized containers, of particles withn neighbors is then

each with 5000 particles and a particle sound speed of Nale™ @
cs=200 m/s. One containé¥,) is a 1 n¥ cube, and the other NP(n)=
container(V,) is a box with linear dimensions G8LX1 m®,

The measured pressur@s system unitsfor each subsystem

just before joining them are 2.04a0° for V, and . . o
25691 for V,, giving an expected final pressure of The fact that the particles interact and are moving is a

2.279¢10°. We measure the final pressure averaged ovepore complicated issue. The particle interactions are repul-

; . : o sive, so we expect the actual number of particles with
every 10 time steps during the 0.2 s interval after joining the ighbors to be less than that given by E26). The simplest

boxes and obtain excellent agreement with a mean value df L R :
2 276x1CF and a rms deviation of 2.3510°. The momen- W& to account for this is to replaeein this equation by an

tum distributions of the mixed system are also found to agreggﬁ} Ctslvihvfr::mﬁlé*rzsv ’I tzr;?o;[:e; tg) :eiremmﬁ]* tr?enf'lr:- )
with the theoretical distributions and are not shown. ysu u (p6) agree wi ne simu
lated results. The results for, =0.92 (corresponding to an

effective maximum interaction distancelof =0.019 45 are
shown in Table | forD;.

Because a fundamental requirement for SPH calculations This is an admittedly crude, although intuitive, first-order
is the determination of all other particles withirh 2f any  approximation to the complex issue pfpoint anticorrela-
given particle, we know the number of neighbors that anytion functions as discussed in depth by Peeljl®. We
particle has at the end of any time step and can compare th&ve circumvented most of the complexity by choosing only
corresponding simulated and theoretical distributions. It isoneeffective volume for any number of neighbors. This vol-

T (20

where nowa=(N—1)v/V.

F. Distribution of the number of neighbors
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ume was chosen to make the=2 values agree closely, so the spatial distribution of the particles can be measured and
the agreement between the simulated and analytical valuesmpared to a simple theoreticalpoint anticorrelated dis-

decreases steadily for larger tribution by defining an effective interaction volume.
There are many ways these basic simulations can be
VIl. CONCLUSIONS modified to handle more complicated and practical problems.

. . We have used isothermal particles, but heat transfer between
We have demonstrated that the numerical technique COM= icles requires onlv a different equation of state and a
monly known as SPH can be easily modified for simple mo- quire Y d .

more accurate integration scheme for the energy equation.

lecular dynamics simulations of systems confined inside con_l_h s be h ter b h i d th
tainers with perfectly reflecting walls. Regardless of the!€'€ ¢an also be heat transfer between the particles and the

initial velocity distribution, collisions quickly redistribute the Walls if @ thermal conduction term is added to the energy
momenta so that the speed and velocity distributions beconfeduation. Although we have restricted ourselves to identical
Maxwellian by the time each particle has undergorg0  Mass and size particles for simplicity, this can be changed to
collisions with other particles. For the parameters used herdhodel nonhomogeneous systems. It is trivial to include ex-
the mean free paths differ by10% from those predicted for ternal force fields, if desired. The flat walls can be replaced
a system of hard spheres because substantial particle intd?y arbitrary surfaces if the local normal vectors are known.
penetration occurs. The pressure exerted on the container Other types of physical systems can also benefit from the
walls due to momentum exchange with the particles agreegeneral numerical techniques that SPH uses. These include
with the predicted values to withir-3%, while the time any type of systems where the particle interactions act over
integration scheme conserves the total kinetic energy tshort, well-defined ranges, such as the motion of ions in a
within about 0.02% over some 1@ime steps. A basic mix- heavily screened potential. For this particular example the
ing problem of two isolated equilibrium systems that areSPH forces would need to be replaced by Coulombic forces,
suddenly allowed to interact gives excellent agreement besut the general SPH sorting and integration schemes could
tween the expected and simulated system pressures. Finallye used with few, if any, changes.
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