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The technique of smoothed particle hydrodynamics~SPH! is used to simulate a variety of three-dimensional
systems comprised of elastic spheres contained in a box with perfectly reflecting walls. Particle interactions are
determined solely by the conservative SPH body forces, from which the potential energy function is derived.
This function is followed to monitor the conservation of the total energy as various initial nonequilibrium
velocity distributions are quickly randomized by particle collisions. The resulting equilibrium speed and
velocity distributions are found to agree with those predicted by kinetic theory. The algorithm conserves the
total energy to within 0.02%. The pressure exerted on the box walls and the mean free path between collisions
are comparable with those expected for a system of rigid particles. The problem of two isolated systems that
are allowed to mix after an impenetrable partition is removed is also simulated with acceptable results. Finally,
the equilibrium spatial distribution of the particles is considered and a semiemperical relationship derived for
this multiply anticorrelated distribution.@S1063-651X~96!01608-X#.

PACS number~s!: 02.70.2c, 02.70.Ns, 05.20.Dd

I. INTRODUCTION

Advances in computational science have made computer
simulations an integral part of investigations of classical sta-
tistical mechanics~see@1# for a general review!. The starting
point for such simulations is usually the interaction potential.
A number of different choices have been used, beginning
with the pioneering work of Alder and Wainwright@2,3# us-
ing infinitely hard spheres surrounded by square well poten-
tials, and followed by the introduction of the continuous
Lennard-Jones potential@4,5#. In this paper we do not
specify the potentiala priori, but rather start with the funda-
mental fact that the momentum distributions in classical sta-
tistical mechanics do not depend on the exact nature of the
interaction between the particles within a system, and so can
be expressed in a form applicable to all bodies@6#. There-
fore, any convenient type of interactions may be chosen for
simulations of these distributions provided that no quantum
effects are to be considered.

A useful computational choice turns out to be the tech-
nique of smoothed particle hydrodynamics~SPH! in which
the particles may be thought of as macroscopic soft spheres
~see@7# for a general review!. The SPH particle interactions
are repulsive and purely hydrodynamic, depending on the
local pressure, density, temperature, and interparticle dis-
tance. Even though SPH has usually been used to model
astrophysical situations with complicated geometries, such as
mass-transferring binaries@8,9#, stellar collisions@10#, and
the origin of the earth-moon system@11#, it has many quali-
ties that also make it well suited for basic molecular dynam-
ics simulations.

First, the conservative and continuous SPH interparticle
forces are usually truncated at a definite separation distance,
avoiding the need to compute long-range forces as well as
the difficulties that can be associated with discrete particle

interactions such as hard spheres or square wells@12#. Sec-
ond, the fundamental requirements of any SPH code to effi-
ciently locate nearest neighbors and advance their phase-
space coordinates means that it is straightforward to modify
existing SPH code for simple molecular dynamics simula-
tions@13#. Third, all the phase-space information about every
particle in the system is always available for statistical analy-
sis, so systems can be studied in considerable detail.

These are more than mere coincidences, but the simple
explanation is that SPH alreadyis a molecular dynamics
technique that has been adapted to the needs of modeling the
average properties of a fluid by using macroparticles and a
smoothing procedure with a statistically significant number
of neighbors~usually *30 neighbors for each particle for
three-dimensional systems!. Hooveret al. @14# explore this
application of SPH for molecular fluids.

But here we use SPH to simulate rarefied classical sys-
tems, so the need for a large number of neighbors is auto-
matically eliminated, even though it is possible for any num-
ber of particles to collide simultaneously. When this does
occasionally happen, the forces are just the sums due to the
individual binary collisions because SPH interactions are
handled pairwise. Now, if these systems are restricted to
some numerical volume where wall collisions are included
by reflecting the particles’ normal velocities at specified
boundaries, we then have an ideal method for performing
simulations of classical systems governed by Maxwell-
Boltzmann statistics. In the simulations presented below, we
use 5000 marble-sized particles of arbitrary mass in a 1 m3

box with perfectly reflecting walls. The particles are soft but
elastic, and capable of storing elastic potential energy during
collisions. We note that SPH particles do not have any spin
angular momentum, so they should be regarded as smooth
spheres, with only the momenta parallel to the lines joining
particle centers altered during collisions.

The rest of this paper is organized as follows. In Sec. II
we give a brief introduction to the theory of SPH. The details
of the numerical method are given in Sec. III. The interaction
potential is derived from the momentum equation in Sec. IV.
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The initial, nonequilibrium velocity distributions are de-
scribed in Sec. V. In Sec. VI we present the results as these
systems evolve to equilibrium configurations, including the
speed and velocity distributions, the pressure exerted by the
particles on the walls of the box, the mean free path between
collisions, and the conservation of the total energy. The basic
model is then modified to simulate a mixing problem where
two initially isolated systems are suddenly allowed to inter-
act after removing a partition. We also take advantage of the
SPH requirement of identifying the neighbors for each par-
ticle to measure the distribution of the number of neighbors.
For comparison we derive a semiempirical analytical expres-
sion for this multiply anticorrelated distribution. Finally, we
conclude in Sec. VII with a summary of our results and some
suggestions for other applications of this new use of SPH.

II. SPH FUNDAMENTALS

The method of smoothed particle hydrodynamics is a La-
grangian technique first developed to model astrophysical
problems with complicated geometries@15,16#. The fluid is
assumed to consist of a finite number of fluid elements, and
the local fluid properties at positionr are determined by
sampling nearby fluid elements and weighting their contribu-
tions according to an analyticsmoothing kernelthat smooths
~or averages! local fluctuations.

The fluid elements are assumed to be spherical particles
of effective radiush, and the kernel is usually chosen so that
the sampling includes only those particles within 2h of a
given point in space; consequently, the quantityh is also
known as thesmoothing length. We assume that all particles
have equal mass and thath is equal for all particles and
constant in time.

The smoothed interpolant for a physical fieldA~r ! is
given by

^A~r !&5E A~r 8!W~r2r 8,h!dr 8, ~1!

whereW~r ,h! is the smoothing kernel and the integration is
over the entire space in which the kernel is defined. The
functionW~r ,h! is chosen to be differentiable and sharply
peaked so that it resembles ad function ash→0, and is
normalized such that*W dV51.

The smoothing kernel used throughout this work is

W~r i j ,h!5
1

ph3 H 12 3
2q

21 3
4q

3 if 0<q<1,
1
4 ~22q!3 if 1<q<2,

0 otherwise,

~2!

where q5r i j /h and the factor 1/ph3 is the normalization
constant@17#. Interparticle distances are discretized with 400
increments perh, and nearby particles are located using the
sorting routine described by Simpson@18#.

If W~r ! is an even function, thenA~r !5^A~r !&1O(h2).
Hence, any physical field can always be replaced by its
smoothed estimate to within the accuracy of the smoothing
process. In SPH, all physical fields are replaced by their
smoothed interpolants and the angular brackets are dropped
as a matter of convenience. Furthermore, because we must
assume a finite number of fluid elements, the integral in Eq.

~1! is replaced by a summation over all the particles within
2h of the locationr . This procedure yields the general form
of SPH interpolants:

A~r !5(
j
mj

Aj

r j
W~r2r j ,h!, ~3!

wheremj is the mass of thej th nearest neighbor. For ex-
ample, the interpolated density for particlei is

r i5(
j
mjWi j . ~4!

Spatial derivatives of interpolated quantities may be
found in a similar manner by using

“A~r !5(
j
mj

Aj

r j
“W~r2r j ,h!. ~5!

Usually a symmetrized form is used for derivatives by taking
either the arithmetic or geometric mean ofA of the particle
located atr and particlej . Using the arithmetic mean, the
momentum equation for pressure forces becomes

d2r i
dt2

52(
j
mj S Pi

r i
2 1

Pj

r j
2D“ iWi j , ~6!

where the sums are over all particles within 2h of particle i ,
and the gradient“i is evaluated with respect to thei th coor-
dinates.

Finally, we mention that although SPH simulations gen-
erally use some kind of artificial viscosity or damping to
prevent postshock oscillations, we do not include these ef-
fects in our models because to do so would violate the spirit
of the kinetic models we are simulating, even though some
collisions are formally supersonic. This decision may intro-
duce a small, but as demonstrated by the results, negligible
amount of numerical noise.

III. NUMERICS

We use the isothermal equation of state

Pi5r ics
2, ~7!

wherecs is the local sound speed, to guarantee that the par-
ticles’ thermal energies are held constant. The collisions are
therefore elastic, even though particles may actually pass
through each other as discussed further in Sec. IV. It is im-
portant to note that even though the local ‘‘pressure’’ is
found using an equation of state derived from kinetic theory
itself, the fundamental assumption that the exact form of the
particle interactions is irrelevant is not contradicted.

The momentum equation is integrated using the leapfrog
method:

r i
n5r i

n211Dtn21vi
n21/2, ~8!

vi
n11/25vi

n21/21 1
2 ~Dtn211Dtn!ai

n , ~9!

where the superscripts refer to the variable time step which is
chosen by
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Dtn5e minF h

vmax
n21/2,S h

amax
n D 1/2, hcsG . ~10!

The subscript ‘‘max’’ refers to the maximum value of all
particles ande50.3 is the Courant number@19# chosen to
maintain numerical stability. A typical time step for the mod-
els presented in this paper is'331026 s.

The walls of the box holding the particles are assumed to
be flat and perfectly reflecting. The calculation of collisions
between the particles and the walls requires the end point
velocities, which are found by

vi
n5 1

2 ~vi
n11/21vi

n21/2!. ~11!

If a particle is approaching a wall and is withinh of the wall,
the normal component of the velocity is reflected by

vi ,normal
n11/2 5vi ,normal

n11/2 22vi ,normal
n . ~12!

This method of handling wall collisions is quite different
from the usual method of modeling boundaries by dense ar-
rays of SPH particles@14#, and can be extended to arbitrarily
shaped surfaces provided that the local normal is known.

As noted above, the actual massm of the particles is
arbitrary and irrelevant if we assume that the mass of the box
is much greater thanm and that the particles are identical and
only interact with each other. Consequently, we use units of
energy and pressureper unit mass. In MKS units, these are
m2 s22 and m21 s22, respectively.

It is convenient to use velocities in units of the local iso-
thermal sound speed when considering the total kinetic en-
ergy. For all the simulations presented we usecs5AkT/m
5200 m/s, and note that the temperature and mass could be
specified, if desired. The total kinetic energy~per unit mass!
for a system ofN particles is then32NkT/m5 3

2Ncs
2. The

numerical integration scheme conserves this to within
'0.02% over.105 time steps. The results were all gener-
ated on a Sparc ELC usingFORTRAN 77with single precision
numbers, typically requiring;3 h of CPU time per 0.1 s of
simulated time.

IV. THE POTENTIAL ENERGY FUNCTION

The fact that the SPH forces are conservative allows us to
derive the potential energy function from the equation of
motion. For a single pair of equal mass particles the accel-
erations are given by Eq.~6!,

ai52aj52S Pi

r i
2 1

Pj

r j
2D“Wij ~q!52“ui j , ~13!

whereui j is the elastic potential energy per unit mass of the
collision. Using Eq.~7! we obtain

2cs
2S “8Wij ~q!

11Wij8 ~q! D 5“ui j ~q!. ~14!

The notationW8 indicates that the normalization constant is
not to be included. Integrating Eq.~14! gives

ui j ~q!52cs
2ln@11W8~q!#. ~15!

This function is shown in Fig. 1 usingW as given in Eq.~2!.
The maximum potential energy of a binary collision is
~2 ln 2!c s

251.38c s
2. If the total kinetic energy of a colliding

pair exceeds this value, the particles will pass through each
other. This certainly occurs in these simulations because
some particles have speeds several timescs . The total poten-
tial energyUn of the entire system at time stepn is then

Un52cs
2(

i
lnS 11(

j
W8~qi j ! D , ~16!

where 11(W8(qi j ) is the number density at the location of
particle i . This basic result is mentioned briefly in@20#.

Even though it is not strictly necessary, we also integrate
the the internal energy equation for each particle as a check
on the numerical stability of our models and for comparison
with Eq. ~16!. The standard hydrodynamic equation for the
rate of change of the internal energy due to body forces is

dui
dt

52
Pi

r i
“•vi , ~17!

which can be written in SPH formalism as

dui
dt

5
Pi

r i
2 (

j
mvi j •“ iWi j , ~18!

wherevi j5vi2vj . We integrate this with the simple one-step
implicit method,

ui
n5ui

n211Dtn21
dui

n

dt
, ~19!

and setui50 when there are no nearest neighbors. The total
integrated potential and kinetic energies at time stepn are
then

Un5(
i
ui
n ~20!

and

Kn5
1

2 (
i
vi
n
•vi

n . ~21!

FIG. 1. The potential energy equation~15! as a function of
particle separation for one pair of colliding particles.

54 2079CLASSICAL KINETIC THEORY SIMULATIONS USING . . .



V. INITIAL CONFIGURATIONS

The models initially consist of a set of 5000,h50.01 m
particles placed pseudorandomly in a cube of side 1 m with
initial interparticle separations of at least 4h and with all the
particles at least 2h away from the walls. The total maxi-
mum volume occupied by the particles for these parameters
is 0.021 m3, satisfying the important condition that the gas be
rarefied.

Three different initial velocity configurations are used,
each of which gives every particle a total speed of)cs , but
distributed differently between the three spatial directions so
that systems with differing degrees of randomness can be
compared as they approach equilibrium~Fig. 2!. Particles
may also be injected through a hole in one wall of the box
with similar results@13#. The first initial velocity distribu-
tion, denotedD1, gives all particles a speed of)cs in the
1x direction. The second,D2, randomly assigns a velocity
of 6)cs in only one of thex, y, or z directions. The third
distributionD3 assigns random velocity components in all
three spatial directions, withv normalized to)cs .

VI. RESULTS

A. Speed and velocity distributions

The distributions of the particle speeds for all three initial
velocity distributions are shown in Fig. 3 as the systems
come to equilibrium. As expected, these rapidly approach the
theoretical Maxwell-Boltzmann curves, regardless of the ini-
tial velocity distribution. The initially more randomized dis-
tributionsD2 andD3 approach the expected curves slightly
faster thanD1. Each of these systems is well randomized and
close to equilibrium after;50 collisions per particle, and
they are close to Maxwellian after as few as;25 collisions,
with D2 andD3 requiring only about 15 to 20 collisions. The
speed distributions are nearly identical after;0.02 s.

The collision rate of;25 collisions per particle per 0.01 s
of real time was found to be approximately constant as all
three systems were followed out to a maximum of 0.3 s real
time. The method of measuring the number of collisions is
described in the next section.

In Fig. 4 we show the distribution of speeds as well as
velocities forD1 averaged over several different times after
equilibrium has been established. The theoretical curves are
again shown for comparison. There are slight deviations due
to random fluctuations which are most pronounced near the
peaks, but in general there is excellent agreement. The re-
sults forD2 andD3 are similar.

B. Collisions and mean free paths

The expected mean free pathl for a system ofN identical
hard-sphereparticles of radiusr contained inside a volume
V can be derived by scaling arguments@21# and is

lHS5
V

4&pr 2N
. ~22!

For the parameters used here,lHS50.113 m.
We measurelSPH for each particle by assuming that each

free path begins when the particle no longer has any neigh-
bors, and ends when it first contacts another particle. These

FIG. 2. The initial velocity distributions shown in the plane
through the middle of the computational box. The total speed of
each particle is)cs .

FIG. 3. Histograms of the particle speeds as the systems ap-
proach equilibrium. The exact theoretical Maxwell-Boltzmann dis-
tributions are shown for comparison. The average number of colli-
sions per particle is also given for each time.

FIG. 4. Speed and velocity distributions forD1 averaged over
the five different timest50.1, 0.15, 0.2, 0.25, and 0.3 s.
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distances are summed and then divided by the number of
collisions to find the mean free path for each particle. Mul-
tiple particle collisions are not handled in any special
manner—a particle is either colliding or it is not. So even
though a particle may collide with several particles either
simultaneously or sequentially and register only the end of
the most recent free path, no free path distance is recorded
until the particle once again has no neighbors.

The histograms of the individual mean paths for all three
initial distributions for the time interval between 0.1 and 0.2
s are shown in Fig. 5. These are basically Gaussians skewed
very slightly towards the larger values, with virtually identi-
cal average values of 0.10060.010 m.

The value forlHS is within about one standard deviation
of lSPH, which is alsoh. The most obvious reason for this
difference is that SPH particles arenot hard spheres but can
interpenetrate after first coming into contact with each other
and before reversing their direction. Figure 6 shows the av-
erage interparticle distance for each colliding particle forD1
at t50.2 s. Although it is clear that most of these distances
are greater than 1.5h ~0.015 m!, about 30% are less, indicat-
ing that substantial particle interpenetration occurs. This
means that when a collision is recorded and the free path
calculated, the distance is underestimated by a maximum
amount of abouth. The relatively small number of particles
in the systems is also a factor in these different values forl,
with the difference being inversely proportional to the num-
ber of particles.

C. Pressures

The expected pressure that the particles exert on the walls
of the box due to momentum transfer is

P5
1

3

N

V
mv2, ~23!

where v253cs
2. We expect a value of 23108 m21 s22 for

N55000,V51 m3, andcs5200 m/s.
The pressure at the end of each time step is measured by

summing the absolute values of the change in the normal
velocities reflected when wall collisions occur and dividing
this by the time step. These pressures are then averaged over
every 10 time steps between 0 and 0.3 s. The pressures for
each of the initial velocity distributions are nearly identical
and constant over sufficiently long intervals~*0.01 s!.

The pressures forD1 during the time interval from 0.1 to
0.2 s are shown in Fig. 7. The results for other time intervals
and also forD2 and D3 are nearly identical and are not
shown. The pressure vs time plot shows random fluctuations
about a constant mean value, while the histogram is a broad
Gaussian with considerable fluctuations caused by the fact
that, on average, only;10 particles collide with the walls
each time step. In system units, the pressure varies from
about 13108 to 33108 with an average of 2.0493108 and a
rms deviation of 2.503107. The average pressure is 2.45%
larger than expected because any particle approaching and
within h of a wall is reflected, resulting in a smaller than
average particle density near the walls. This effectively de-
creases the volume of the box by;6% for particles ap-
proaching the walls, but not for particles receding from the
walls. The net result is about a 3% decrease in the volume of
the box, and hence an increase in the pressure by about the
same amount by Eq.~23!, in reasonable agreement with the
simulated results.

D. Conservation of energy

Because these are simulations and not actual physical sys-
tems, the energy does not fluctuate as it would for a real
isothermal system in contact with a very large heat reservoir.
Consequently, the total energy should be very nearly con-
stant if the integration schemes are sound. The total energy
for all models is conserved to within 0.02% over some 105

time steps using either Eq.~16! or ~20! with Eq. ~21!, but the
logarithmic potential Eq.~16! artificially reduces the disper-
sion in the total energy because it is slightly out of phase
with the velocities used to find the total kinetic energy at
time stepn. This tends to cancel the random errors and re-
duce the dispersion in the total energy by a factor of about 4
or 5 as demonstrated in Fig. 8 during the first 0.03 s forD1.
This plot also shows some ringing during the beginning of

FIG. 5. Histograms of the mean free paths for all particles be-
tweent50.1 and 0.2 s for each initial velocity distribution.

FIG. 6. The histogram of the distances between colliding par-
ticles forD1 at t50.2 s.

FIG. 7. Pressure vs time and a histogram of the pressures forD1
during the time interval between 0.1 and 0.2 s.
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the simulation because each particle has the same velocity
and no nearest neighbors. This is not seen in the energy plots
for D2 andD3 ~not shown!.

E. Isothermal mixing

The models we have presented are easily modified to
handle mixing problems, so we now consider two containers
initially at equilibrium with the same number of particles
with the same total energy (T15T2), but at different pres-
sures (V1ÞV2) @6#. The containers are then joined and the
particles allowed to mix. The final expected pressure after
the mixed system comes to equilibrium is

P52S 1P1
1

1

P2
D 21

. ~24!

We useD1 for this test and two different sized containers,
each with 5000 particles and a particle sound speed of
cs5200 m/s. One container~V1! is a 1 m

3 cube, and the other
container~V2! is a box with linear dimensions 0.83131 m3.
The measured pressures~in system units! for each subsystem
just before joining them are 2.0493108 for V1 and
2.5693108 for V2, giving an expected final pressure of
2.2793108. We measure the final pressure averaged over
every 10 time steps during the 0.2 s interval after joining the
boxes and obtain excellent agreement with a mean value of
2.2763108 and a rms deviation of 2.253107. The momen-
tum distributions of the mixed system are also found to agree
with the theoretical distributions and are not shown.

F. Distribution of the number of neighbors

Because a fundamental requirement for SPH calculations
is the determination of all other particles within 2h of any
given particle, we know the number of neighbors that any
particle has at the end of any time step and can compare the
corresponding simulated and theoretical distributions. It is

worthwhile to briefly describe an approximate analysis for
determining the number of neighbors that any particle is ex-
pected to have while paying special attention to the assump-
tions used@6#.

Let V andN be the volume occupied by the gas and the
number of particles in it, andv a small part of the volume,
v!V. If the gas is assumed to be uniform and the particles
noninteracting, the probability that that any given particle is
in the volumev is v/V, so that the probability thatn given
particles are in this volume is (v/V)n. Similarly, the prob-
ability that a particle is not inv is (V2v)/V, and the prob-
ability that N2n given particles are not in this volume is
[(V2v)/V]N2n. If we include a factor which gives the num-
ber of ways of choosingn out ofN particles, then forN large
and n!N, the probabilityP(n) that v containsn particles
becomes the Poisson distribution,

P~n!5
ane2a

n!
, ~25!

wherea5Nv/V.
But this is not the situation that we have because the

particlesdo interact and are moving. Furthermore, we want
the distribution of the number of neighbors the particles
have, and not the number density at some random location in
the volumeV. This second difference is easy to resolve.
Because a particle can have at mostN21 neighbors, it only
necessary to replaceN byN21 in Eq.~25!. The total number
of particles withn neighbors is then

NP~n!5
Nane2a

n!
, ~26!

where nowa5(N21)v/V.
The fact that the particles interact and are moving is a

more complicated issue. The particle interactions are repul-
sive, so we expect the actual number of particles withn
neighbors to be less than that given by Eq.~26!. The simplest
way to account for this is to replacev in this equation by an
effective volumev*

,v, and then to determinev*
empiri-

cally such that the results from Eq.~26! agree with the simu-
lated results. The results forv*

50.92v ~corresponding to an
effective maximum interaction distance ofh

*
50.019 45! are

shown in Table I forD1.
This is an admittedly crude, although intuitive, first-order

approximation to the complex issue ofn-point anticorrela-
tion functions as discussed in depth by Peebles@22#. We
have circumvented most of the complexity by choosing only
oneeffective volume for any number of neighbors. This vol-

FIG. 8. The kinetic, potential, and total energies forD1 during
the first 0.03 s. The ringing at the start is due to the uniform initial
velocities.

TABLE I. The theoretical and simulated distributions of neigh-
bors.

Number of
neighbors (n)

Theoretical no.
of particles

Simulated no.
of particles

0 4286.0 4289.6
1 660.4 659.9
2 50.9 47.7
3 2.6 2.2
4 0.1 0.07
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ume was chosen to make then52 values agree closely, so
the agreement between the simulated and analytical values
decreases steadily for largern.

VII. CONCLUSIONS

We have demonstrated that the numerical technique com-
monly known as SPH can be easily modified for simple mo-
lecular dynamics simulations of systems confined inside con-
tainers with perfectly reflecting walls. Regardless of the
initial velocity distribution, collisions quickly redistribute the
momenta so that the speed and velocity distributions become
Maxwellian by the time each particle has undergone;50
collisions with other particles. For the parameters used here,
the mean free paths differ by;10% from those predicted for
a system of hard spheres because substantial particle inter-
penetration occurs. The pressure exerted on the container
walls due to momentum exchange with the particles agrees
with the predicted values to within;3%, while the time
integration scheme conserves the total kinetic energy to
within about 0.02% over some 105 time steps. A basic mix-
ing problem of two isolated equilibrium systems that are
suddenly allowed to interact gives excellent agreement be-
tween the expected and simulated system pressures. Finally,

the spatial distribution of the particles can be measured and
compared to a simple theoreticaln-point anticorrelated dis-
tribution by defining an effective interaction volume.

There are many ways these basic simulations can be
modified to handle more complicated and practical problems.
We have used isothermal particles, but heat transfer between
particles requires only a different equation of state and a
more accurate integration scheme for the energy equation.
There can also be heat transfer between the particles and the
walls if a thermal conduction term is added to the energy
equation. Although we have restricted ourselves to identical
mass and size particles for simplicity, this can be changed to
model nonhomogeneous systems. It is trivial to include ex-
ternal force fields, if desired. The flat walls can be replaced
by arbitrary surfaces if the local normal vectors are known.

Other types of physical systems can also benefit from the
general numerical techniques that SPH uses. These include
any type of systems where the particle interactions act over
short, well-defined ranges, such as the motion of ions in a
heavily screened potential. For this particular example the
SPH forces would need to be replaced by Coulombic forces,
but the general SPH sorting and integration schemes could
be used with few, if any, changes.
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